OVERVIEW OF EDGE SIMULATION LABORATORY

R. H. Cohen, M. Dorr, J. Hittinger, T. Rognlien, M. Umansky, A. Xiong, X. Xu, LLNL;

E. Belli, J. Candy, P. Snyder, G.A.,

P. Colella, D. Martin, T. Sternberg, B. Van Straalen, LBNL; K. Bodi, S. Krasheninnikov, UCSD

> edge simulation aboratory

APS-DPP Meeting, Philadelphia November 2, 2006

What is the ESL?

- ESL = Edge Simulation Laboratory
 - Project to develop an edge gyrokinetic code using continuum [evolving f(x,v) on a 5-D mesh] methods
 - New OFES/OASCR base-program activity
 - Collaboration: LLNL, GA, UCSD, LBNL, CompX, Lodestar, PPPL.
 Others welcome.
 - Outgrowth of LLNL LDRD project which has developed TEMPEST
 - Will develop code based on experience from TEMPEST, GYRO, and other continuum GK codes

We are building a continuum edge gyrokinetic code

- We need a edge kinetic code because:
 - Ion drift orbit width Δ ~ pedestal width L_p
 - Mean free path ~ connection length
- We settled on a continuum approach, because:
 - Concerns about noise in PIC simulations due to:
 - Inapplicability of δf
 - Still need accuracy in places/times with small fluctuations

- Expense of fully nonlinear GK PIC collision operators
- Applicability of advanced fluid numerical techniques, e.g.
 - High-order discretizations
 - AMR in x + v
 - Implicit timestepping
- Successful examples (core codes): GYRO, GS2, GENE...
- Such an important/challenging problem merits both approaches

The ESL project is structured around the notion of "spiral software design"

• ~ 18 mo - 2 year cycles:

ESL Plan as of 10/1/06 6/1/06 1/1/07 7/1/07 1/1/08 8/1/08 2/1/09 Code development: LLNL TEMPEST (4D, 5D electrostatic GK capability)

Near-term (1-year) ESL activities

- LLNL/LBNL math/CS team
 - Port TEMPEST to LBL's Chombo infrastructure (nearly done)
 - Design and implement basic structure for Phase 1 code.

MEANWHILE:

- Physics team:
 - LLNL-FEP
 - TEMPEST: Complete 5-D electrostatic; V&V; further algorithm exploration; physics studies (base program)
 - Provide software for gyro-averaging and collisions
 - GA: EGK rapid-prototype code, to
 - explore algorithmic issues associated with $v_{||}$ - μ and strong kinetic nonlinearity
 - Develop electromagnetic solver
 - UCSD: diffusion operator & related B.C. issues (with LLNL)
- LLNL/LBNL math/CS team
 - Explore algorithmic issues associated with $v_{||}$ - μ
 - Develop high-order finite-volume discretizations on mapped grids
- Everyone: contribute design documents for Phase 1 code

TEMPEST is in effect ESL's "Phase 0" code

- ε,μ coordinates for velocity space ($\varepsilon = mv^2/2 + q\Phi_0$)
 - Advantage: accurate representation of parallel advection
 - Challenges: cut cells at $v_{||} = 0$; $\pm v_{||}$ sheets
- Electrostatic
- Full-f (and linearized option)
- 4D (2x, 2v), 5D(3x, 2v) versions from same source
- Full divertor or circular (ring) geometry
- Multiple collision options
 - Krook
 - Finite-volume operator, with coefficients from either
 - Analytic Rosenbluth potentials (linearized collisions)
 - CQL Fokker-Planck package
- High-order (4th, 5th) spatial differencing
- Kinetic or adiabatic electrons
- Python interface facilitates problem setup, mid-run and post-run data analysis

TEMPEST is operational in 4D and has produced initial 5D runs

- 3D (1x, 2v) runs
 - "Pastukhov" collisional endloss tests
- 4D runs
 - Neoclassical benchmarks and divertorgeometry studies
 - GAM tests
 - Anomalous transport coefficients being implemented ("kinetic UEDGE")

- Stable drift wave
- ITG mode

EGK Rapid-prototype code

- Developing a full-f code, v_{II}-μ coordinates, simple geometry to
 - explore algorithms, physics of strong v_{\parallel} nonlinearity
 - serve as vehicle for EM solver development
- Current status:
 - Linearized code, radial + poloidal grids + n_{tor}
 - Adiabatic or kinetic electrons
 - ITG, TEM benchmarks vs. GS2
 - GAM tests

Math/CS Team activities

- Technology for arbitrarily mapped multiblock grids (provides flexible options for dealing with sheared fields and edge topology)
- High-order finite-volume discretizations (in 5D)
- Assessment of time-advance strategies for differentialalgebraic systems
- Upgrades to CHOMBO AMR framework to accommodate needs of ESL

We are headed for a code with the following:

- Continuum solution to GK equations
- Full-f
- Extension of GK equations for improved applicability to edge problems
- Electromagnetic
- Full divertor geometry; full 2D equilibrium potential structure
- Runnable as 4-D $(\Psi, \theta, v_{||}, \mu; \text{ transport})$ or 5-D $(\Psi, \theta, \phi, v_{||}, \mu; \text{ turbulence})$ code
- Conservative high-order finite-volume discretization
- Arbitrary mapped multiblock grids provide a range of options to handle magnetic shear
- Adaptivity to handle local structure in x or v
 - Built in AMR framework
 - Funding permitting: dynamic grid alignment (to follow large δB)
- Optional fluid equations in same framework

Other ESL-related presentations

This session:

- Xiong et al, "Verification of TEMPEST with neoclassical transport theory"
- Belli et al, "Studies of Gyrokinetic Turbulence Models for Edge Plasmas
- Xu et al, "5D Tempest simulations of kinetic edge turbulence"
- Krasheninnikov et al, "Plasma equilibrium in the vicinity of X-point"

Posters earlier this week:

- JP1.00061, Rognlien et al, "Simulations of 4D edge transport and dynamics using the TEMPEST gyrokinetic code"
- JP1.00062, Kerbel and Xiong, "Numerical Methods for Nonlinear Fokker-Planck Collision Operator in TEMPEST"
- JP1.00063, Dorr et al, "Numerical Solution of the Gyrokinetic Poisson Equation in TEMPEST"
- PRESENTATIONS WILL BE POSTED AT PROJECT WEB SITE:

http://esl.lbl.gov